Содержание

3D ручка — Википедия

Внешний вид современной 3D ручки и описание функций кнопок управления.

3D ручка — это инструмент для рисования пластиком, позволяющий создавать трехмерные объекты. Используется для творчества, развивающих занятий с детьми, коррекции изделий, напечатанных с помощью 3D принтера, и мелкого бытового ремонта пластиковых предметов[1]. Благодаря распространению 3D ручек появился новый вид искусства – 3D pen art (перевод: искусство, созданное с помощью 3D ручки).

История

Первая в мире 3D ручка, получившая название 3Doodler, была разработана американской компанией WobbleWorks. Идея пришла в голову основателям компании, Максу Боугу и Питеру Дилворту, когда сломался 3D принтер и потребовалось заделать брешь в напечатанной 3D модели[2]. Инженеры создали прототип ручки, рисующей пластиком, и представили свой проект на Kickstarter в 2013 году с целью собрать $ 30 000 для начала производства. В результате краудфандинга удалось привлечь $2,3 миллиона долларов, что стало свидетельством большого интереса аудитории к проекту.

После успеха 3Doodler на рынке стали появляться 3D ручки других производителей.

Виды 3D ручек

По принципу работы 3D ручки разделяются на два вида: «горячие» и «холодные».

«Горячие» 3D ручки

Поделка, созданная «горячей» 3D ручкой

«Горячие» ручки заправляются термопластиком, который поставляется в виде прутков или катушек нитей. В верхней части корпуса 3D ручки располагается отверстие, в которое вставляется пластик. Встроенный механизм автоматически подводит пластик к экструдеру, где он нагревается и подается в горячем виде через сопло. Расплавленный пластик способен принимать любую форму, а затем быстро застывает. Основные элементы «горячей» 3D ручки: сопло, механизм подачи пластиковой нити, нагревательный элемент, вентилятор для охлаждения верхней части сопла и ручки в целом, микроконтроллер для управления работой вентилятора, механизма подачи и нагревательного элемента. Для работы «горячей» 3D ручки требуется электропитание – как правило, используются обычные блоки питания с преобразователем напряжения 12В.

Подача материала осуществляется при нажатии соответствующей кнопки. Некоторые модели, оснащаются регулятором скорости подачи пластика, регулятором температуры нагрева и дисплеем, на котором отображается информация о выбранном режиме.

Также во многих 3D ручках есть кнопка реверса, которая позволяет легко извлекать пластиковую нить из ручки.

К преимуществам «горячих» 3D ручек относятся: небольшой вес, компактность, простота использования, прочность поделок, доступная стоимость расходных материалов. В качестве недостатков пользователи отмечают наличие проводов и нагревание сопла ручки до высокой температуры.

«Холодные» 3D ручки

Принцип действия «холодной» 3D ручки основан на экструзии жидкой фотополимерной смолы, затвердевающий на выходе под воздействием ультрафиолетового излучателя. В таком устройстве нет нагревательных элементов, и материал для рисования не имеет высокой температуры. Гаджет работает без проводов, энергопотребление происходит за счет встроенного аккумулятора. В ручку вставляется картридж с жидким полимером. Для большинства «холодных» 3D ручек доступны разные виды смол: обычные, эластичные, магнитные, светящиеся, меняющие цвет в зависимости от температуры и даже чернила для бодиарта

[3].

Первой в мире 3D ручкой, работающей по технологии фотополимеризации, стал бренд CreoPop.

К преимуществам «холодных» 3D ручек относят отсутствие горячих элементов, бесшумность, работа без проводов, возможность использования большого количества фотополимерных смол с различными свойствами[4].Среди недостатков – высокая стоимость ручки и материалов, хрупкость поделок.

Расходные материалы

Основными материалами, используемыми в работе 3D ручек нагревательного типа, являются ABS и с PLA пластик

[5].

ABS пластик

В основе ABS полимера – соединения, получаемые из нефти. Материал не подвержен разложению и обладает высокой прочностью, поэтому в сфере 3D печати является наиболее распространенным[6].

К преимуществам относятся:

  • застывает при температуре 100-110 градусов;
  • высокая механическая прочность;
  • глянцевая поверхность. Этот полимер при затвердевании имеет высокий уровень глянца, что делает изделия или макеты из него более привлекательными;
  • возможность вторичного использования. При утилизации ABS пластик перерабатывается без потери своих основных свойств;
  • возможность легкой обработки. Уже готовое изделие, созданное с помощью 3D ручки, можно в случае необходимости дополнительно обработать, например, отшлифовать.

К недостаткам материала относится легкий специфический запах при нагревании, поэтому его использование рекомендуется в проветриваемых помещениях.

PLA пластик

PLA пластик – органический, биоразлагаемый полилактид, произведенный на основе сахарного тростника или кукурузы.

В отрасли 3D печати PLA пластик нашел широкое применение благодаря своим свойствам:

  • плавится при температуре 160 – 180 градусов;
  • не нуждается в охлаждении;
  • подходит для рисования на различных поверхностях, хорошо держится на ткани;
  • при нагревании не выделяет вредных веществ и не имеет запаха, поэтому является безопасным для детей;
  • практически не подвержен естественной усадке и деформации.

Основной недостаток PLA пластика – это недолговечность изготовленных из него предметов. Изделия из этого полимера уже через год начинает постепенно распадаться. Второй существенный недостаток – это повышенная хрупкость, поэтому данный тип пластика рекомендуется для опытных пользователей 3D ручек.

Другие материалы для 3D ручек нагревательного типа

EMT

расплавляется при низкой температуре (60°С). Материал является более прочным, чем PLA пластик, и не обладает выраженным запахом при нагревании, в отличие от ABS пластика, однако он отличается более высокой стоимостью.

Flexy

пластик плавится при тех же температурах, что и ABS, однако после охлаждения сохраняет гибкость и пластичность — усталостная прочность выше. Подойдет для создания чехлов, кошельков, покрышек игрушечных автомобилей.[4]

3D ручки могут быть совместимы и с другими материалами: поликарбонатом, нейлоном и т.д. Для этого требуется возможность точного регулирования температуры нагрева материала, что приводит к существенному удорожанию 3D ручки.

Вопросы безопасности

3D ручки нагревательного типа являются электроприборами, поэтому работать с ними можно только после изучения инструкции по эксплуатации. Поскольку 3D ручки нагревательного типа имеют горячие элементы, при обращении с ними требуются определённые меры предосторожности. Во время работы с данным оборудованием дети должны быть под присмотром взрослых.

3D ручки, работающие по технологии фотополимеризации, позиционируются как безопасные за счет отсутствия горячих элементов, однако их использование также требует соблюдения мер предосторожности. Поскольку застывание материала происходит под воздействием ультрафиолета, вредного для глаз, необходимо делать перерывы в работе и строго следовать инструкциям производителей[7].

Примечания

Ссылки

Что такое 3D-ручка?

Как работает 3D-ручка

По внешнему виду 3D-ручка лишь формой напоминает канцелярские принадлежности для письма и использует вместо традиционных чернил пластиковую нить или фотополимер. Как и 3D-принтер, она использует тот же тип нагревательного элемента и экструдера, однако вместо компьютера управлять процессом творения будете именно Вы. Сейчас на рынке присутствуют ручки двух типов, работающих по разным методам 3D-печати.

FDM-ручки. Такое устройство в своей работе использует наплавление пластикового прутка: нить нагревается до температуры плавления и выдавливается через наконечник. Это очень похоже на то, как строительный пистолет выдавливает клей или герметик. Расплавленный пластик застывает в течение нескольких секунд, и благодаря этому ручка может рисовать не только на бумаге, но и создавать объемные объекты прямо в воздухе.

SLA-ручки. Так называемые «холодные» ручки не так давно появились в продаже, но быстро завоевали популярность. Они совсем не нагреваются, а застывание филамента происходит под действием ультрафиолета. В качестве материала для печати этот интструмент использует светочувствительную смолу. Поэтому, в отличие от FDM- ручек, эти устройства безопасны для детей, поскольку не имеют абсолютно никаких горячих частей.

Что можно делать с помощью 3D-ручки?

Сфера применения ручки ограничивается только Вашей фантазией и физическими возможностями расходных материалов. С помощью этого устройства Вы сможете рисовать пластиком практически на любых поверхностях, украшать предметы обихода, создавать рисунки прямо в воздухе. В руках умелого дизайнера или художника ручки превращаются в инструмент для создания уникальных объектов, например, авторской мебели или модных аксессуаров. 3D-ручки разрушают традиционные представления о творчестве, сочетая плоские рисунки с трехмерными изображениями. Большой интерес устройства вызывают у детей. 3D-ручки с легкостью заменяют наскучившие краски и пластилин, не уступая им по функционалу.

Более практичный человек найдет применение ручки в мелком ремонте. С их помощью легко отремонтировать или модифицировать другие изделия из пластика. Например, склеить сломанную игрушку, добавить дополнительные элементы привычным предметам или залатать пластиковую деталь. Кстати, именно так и появилась первая 3D-ручка 3Doddler. Создатели устройства Макс Боуг и Питер Дилворт пытались заделать дыру в макете после некачественной 3D-печати и пришли к мысли о компактном аддитивном девайсе. Впрочем, первый 3Doddler был способен не только на это (см. видео).

Расходные материалы для 3D-ручки

Как и для 3D-принтеров, расходным материалом для ручки является пластик либо фотополимерная смола.

FDM-ручки используют в работе нить ABS или PLA диаметром 1,75 мм или 3 мм. Поскольку у данных филаментов разная температура экструзии, ручка имеет возможность переключения между видами пластика. Некоторые компании предлагают специальную нить для 3D-ручек, однако в устройстве может использоваться и обычный филамент для принтера. PLA больше используется для создания горизонтальных рисунков, тогда как пластик ABS годится и для вертикальных. Последний хуже прилипает к поверхностям, поэтому им лучше рисовать по трафаретам, а с помощью PLA можно творить непосредственно на стекле или керамике.

Для «холодных» ручек, как уже было сказано, исходным сырьем является фотополимерная смола. Стоит она дороже пластика, однако в магазинах можно подобрать материалы с интересными физическими свойствами. Что вы скажете о чернилах, светящихся в темноте или меняющих цвет в зависимости от температуры?

Важные характеристики 3D-ручки, или как не купить кота в мешке

По мнению редактор блога компании «Top 3D Shop» Михаила Скотта, при выборе 3D-ручки, в первую очередь, следует обратить внимание на три вещи:

1. Технология 3D-печати. Важно учесть, для кого приобретается 3D-ручка и для каких целей. Если это ручка, печатающая расплавленным пластиком, например, то детям до 10 лет она не подойдёт. Есть фотополимерные образцы, более безопасные — не имеющие сильно нагревающихся в процессе работы частей. Если это ручка для корректировки 3D-распечаток, создания художественных объектов или мейкерства — напротив, лучше выбрать именно FDM-прибор.

2. Расходники — состав и формат используемых материалов, разные типы пластика и типоразмер прутка. Не все ручки имеют терморегуляцию и могут рисовать разными материалами, необходимо выбрать подходящую. Если ручку приобретает человек, который уже имеет 3D-принтер и который хочет сэкономить на расходниках, очевидно, что предпочтителен будет аппарат, рисующий прутком из того же материала и того же диаметра, который уже есть в наличии у этого пользователя.

3. Функции регулировки температуры и скорости. Степень нагрева экструдера и скорость подачи материала в разных ручках может отличаться. Корректировать выбор следует в зависимости от того, насколько важна точность этих параметров. Если 3D-ручка приобретается как рабочий инструмент, то возможности регулировки более важны, если же как игрушка — можно пренебречь «избыточными» функциями и выбрать более доступный вариант.

Не в последнюю очередь стоит обратить внимание на наличие гарантии. 3D-ручку, купленную на заграничной интернет-площадке, починить в случае поломки будет сложно (зачастую — проще выбросить). Гаджет, купленный у официального дистрибьютора, можно поменять или отремонтировать по гарантии.

Помимо этого, важными характеристиками 3D-ручки являются:

Поколение 3D-ручки. За 4 года существования девайса сменилось уже 6 поколений устройств. Самая первая ручка не имела дисплея, хромала регулировка температуры и скорости. Дальнейшие усовершенствования привели к значительным улучшениям в работе инструментов: они стали компактными, тихими, удобными, многие оснащены OLED дисплеями. Известная поговорка гласит, что старый друг лучше нового, но в контексте стремительного развития технологий последние версии уйсройств оказываются гораздо удобнее предыдущих.

Питание. Существуют 3D-ручки, питающиеся от электрической сети и беспроводные, имеющие встроенные аккумуляторы. В зависимости от места и способа эксплуатации пользователь может выбрать наиболее оптимальный вариант устройства. Автономной ручкой удобно рисовать в поездке или на отдыхе, дома же проще использовать проводное устройство.

Характеристика дисплея. Самые первые ручки не имели дисплея, и всю необходимую информацию пользователю приходилось считывать буквально на ощупь. Даже сейчас на прилавках встречаются приборы первых поколений, которые предлагают проверять температуру и скорость подачи опытным путем. Более современные устройства способны отображать основную информацию об экструзии: скорость, температуру, ошибки и т.д.

Бесшумный режим. В большинстве случаев 3D-устройство является синонимом шума и запаха расплавленного пластика — ручки не являются исключением. При выборе устройства стоит обратит внимание на наличие бесшумного режима, иначе постоянное гудение вентилятора не прибавит удовольствия от ее использования.

Эргономика. Что ни говори, а любой инструмент должен удобно лежать в ладони. Перед покупкой подержите ручку, оцените вес, размер, удобство расположения проводов и кнопок/ползунка подачи филамента — ими вы будете пользоваться постоянно. На рынке есть модели не толще фломастера и, наоборот, сравнимые с небольшим бананом — посмотрите, какой вариант наиболее удобен именно для вас. Если пользователь пишет левой рукой — также будьте внимательны, некоторые ручки будут удобны только правшам.

Безопасная 3D-ручка

Сама природа данного печатающего устройства предполагает ее использование в домашнем творчестве. При этом меры предосторожности при работе с ручкой напоминают аналогичные при эксплуатации принтера.

Поскольку в FDM-устройстве присутствуют нагревательные элементы, ни в коем случае нельзя трогать экструдер работающей ручки. Его температура в зависимости от вида пластика может достигать 270 градусов. Поэтому лучше не оставлять без присмотра ребенка, рисующего 3D-ручкой. Ряд производителей и вовсе советуют не приобретать инструмент детям младше 12 лет.

И, поскольку принцип работы ручки связан с расплавленным материалом, пользоваться инструментом лучше в хорошо проветриваемых помещениях: испарения нагретого пластика малоизучены и опасны для здоровья.

«Холодные» ручки являются более безопасными, поскольку не содержат нагревающих элементов. Конечно, работающий инструмент лучше не направлять в глаза: мощность ультрафиолетового излучения фонарика сравнима с солнечной.

Если устройство работает не от аккумулятора, а от сети, дополнительно следует соблюдать правила при работе с электрооборудованием.

Известные модели 3D-ручек

3Doddler — самая первая 3D-ручка. Разработчик устройства, американская компания WobbleWorks, которая смогла уместить 3D-принтер в небольшой пластиковый корпус.

MyRivell — компания из Китая, которая произвела уже несколько поколений устройств.

Funtastique One — еще одна китайская компания, известная своими локализованными версиями устройств для российского рынка.

Creopop — первая ручка, работающая по методу стереолитографии. Это значит, что вместо традиционного пластика используется фотополимер.

Polyes — китайский производитель, ассортимент которого включает как «горячие», так и «холодные» 3D-ручки.

Lix Pen — самая компактная 3D-ручка в мире по заверениям разработчиков.

Не будем спорить о недостатках и преимуществах каждого бренда, отметим лишь, что выбор 3D-ручки — не такой сложный процесс. Зная принцип работы устройства и главные характеристики, вы сможете подобрать устройство, подходящее именно Вам. Главное помнить, что источник творчества — сам человек, а 3D-ручка лишь высокотехнологичный инструмент, который дает возможность привнести в мир больше красоты.

3D ручка — Википедия

Внешний вид современной 3D ручки и описание функций кнопок управления.

3D ручка — это инструмент для рисования пластиком, позволяющий создавать трехмерные объекты. Используется для творчества, развивающих занятий с детьми, коррекции изделий, напечатанных с помощью 3D принтера, и мелкого бытового ремонта пластиковых предметов[1]. Благодаря распространению 3D ручек появился новый вид искусства – 3D pen art (перевод: искусство, созданное с помощью 3D ручки).

История

Первая в мире 3D ручка, получившая название 3Doodler, была разработана американской компанией WobbleWorks. Идея пришла в голову основателям компании, Максу Боугу и Питеру Дилворту, когда сломался 3D принтер и потребовалось заделать брешь в напечатанной 3D модели[2]. Инженеры создали прототип ручки, рисующей пластиком, и представили свой проект на Kickstarter в 2013 году с целью собрать $ 30 000 для начала производства. В результате краудфандинга удалось привлечь $2,3 миллиона долларов, что стало свидетельством большого интереса аудитории к проекту.

После успеха 3Doodler на рынке стали появляться 3D ручки других производителей.

Видео по теме

Виды 3D ручек

По принципу работы 3D ручки разделяются на два вида: «горячие» и «холодные».

«Горячие» 3D ручки

Поделка, созданная «горячей» 3D ручкой

«Горячие» ручки заправляются термопластиком, который поставляется в виде прутков или катушек нитей. В верхней части корпуса 3D ручки располагается отверстие, в которое вставляется пластик. Встроенный механизм автоматически подводит пластик к экструдеру, где он нагревается и подается в горячем виде через сопло. Расплавленный пластик способен принимать любую форму, а затем быстро застывает. Основные элементы «горячей» 3D ручки: сопло, механизм подачи пластиковой нити, нагревательный элемент, вентилятор для охлаждения верхней части сопла и ручки в целом, микроконтроллер для управления работой вентилятора, механизма подачи и нагревательного элемента. Для работы «горячей» 3D ручки требуется электропитание – как правило, используются обычные блоки питания с преобразователем напряжения 12В.

Подача материала осуществляется при нажатии соответствующей кнопки. Некоторые модели, оснащаются регулятором скорости подачи пластика, регулятором температуры нагрева и дисплеем, на котором отображается информация о выбранном режиме.

Также во многих 3D ручках есть кнопка реверса, которая позволяет легко извлекать пластиковую нить из ручки.

К преимуществам «горячих» 3D ручек относятся: небольшой вес, компактность, простота использования, прочность поделок, доступная стоимость расходных материалов. В качестве недостатков пользователи отмечают наличие проводов и нагревание сопла ручки до высокой температуры.

«Холодные» 3D ручки

Принцип действия «холодной» 3D ручки основан на экструзии жидкой фотополимерной смолы, затвердевающий на выходе под воздействием ультрафиолетового излучателя. В таком устройстве нет нагревательных элементов, и материал для рисования не имеет высокой температуры. Гаджет работает без проводов, энергопотребление происходит за счет встроенного аккумулятора. В ручку вставляется картридж с жидким полимером. Для большинства «холодных» 3D ручек доступны разные виды смол: обычные, эластичные, магнитные, светящиеся, меняющие цвет в зависимости от температуры и даже чернила для бодиарта[3].

Первой в мире 3D ручкой, работающей по технологии фотополимеризации, стал бренд CreoPop.

К преимуществам «холодных» 3D ручек относят отсутствие горячих элементов, бесшумность, работа без проводов, возможность использования большого количества фотополимерных смол с различными свойствами[4].Среди недостатков – высокая стоимость ручки и материалов, хрупкость поделок.

Расходные материалы

Основными материалами, используемыми в работе 3D ручек нагревательного типа, являются ABS и с PLA пластик[5].

ABS пластик

В основе ABS полимера – соединения, получаемые из нефти. Материал не подвержен разложению и обладает высокой прочностью, поэтому в сфере 3D печати является наиболее распространенным[6].

К преимуществам относятся:

  • застывает при температуре 100-110 градусов;
  • высокая механическая прочность;
  • глянцевая поверхность. Этот полимер при затвердевании имеет высокий уровень глянца, что делает изделия или макеты из него более привлекательными;
  • возможность вторичного использования. При утилизации ABS пластик перерабатывается без потери своих основных свойств;
  • возможность легкой обработки. Уже готовое изделие, созданное с помощью 3D ручки, можно в случае необходимости дополнительно обработать, например, отшлифовать.

К недостаткам материала относится легкий специфический запах при нагревании, поэтому его использование рекомендуется в проветриваемых помещениях.

PLA пластик

PLA пластик – органический, биоразлагаемый полилактид, произведенный на основе сахарного тростника или кукурузы.

В отрасли 3D печати PLA пластик нашел широкое применение благодаря своим свойствам:

  • плавится при температуре 160 – 180 градусов;
  • не нуждается в охлаждении;
  • подходит для рисования на различных поверхностях, хорошо держится на ткани;
  • при нагревании не выделяет вредных веществ и не имеет запаха, поэтому является безопасным для детей;
  • практически не подвержен естественной усадке и деформации.

Основной недостаток PLA пластика – это недолговечность изготовленных из него предметов. Изделия из этого полимера уже через год начинает постепенно распадаться. Второй существенный недостаток – это повышенная хрупкость, поэтому данный тип пластика рекомендуется для опытных пользователей 3D ручек.

Другие материалы для 3D ручек нагревательного типа

EMT

расплавляется при низкой температуре (60°С). Материал является более прочным, чем PLA пластик, и не обладает выраженным запахом при нагревании, в отличие от ABS пластика, однако он отличается более высокой стоимостью.

Flexy

пластик плавится при тех же температурах, что и ABS, однако после охлаждения сохраняет гибкость и пластичность — усталостная прочность выше. Подойдет для создания чехлов, кошельков, покрышек игрушечных автомобилей.[4]

3D ручки могут быть совместимы и с другими материалами: поликарбонатом, нейлоном и т.д. Для этого требуется возможность точного регулирования температуры нагрева материала, что приводит к существенному удорожанию 3D ручки.

Вопросы безопасности

3D ручки нагревательного типа являются электроприборами, поэтому работать с ними можно только после изучения инструкции по эксплуатации. Поскольку 3D ручки нагревательного типа имеют горячие элементы, при обращении с ними требуются определённые меры предосторожности. Во время работы с данным оборудованием дети должны быть под присмотром взрослых.

3D ручки, работающие по технологии фотополимеризации, позиционируются как безопасные за счет отсутствия горячих элементов, однако их использование также требует соблюдения мер предосторожности. Поскольку застывание материала происходит под воздействием ультрафиолета, вредного для глаз, необходимо делать перерывы в работе и строго следовать инструкциям производителей[7].

Примечания

Ссылки

3D ручка — Википедия. Что такое 3D ручка

Внешний вид современной 3D ручки и описание функций кнопок управления.

3D ручка — это инструмент для рисования пластиком, позволяющий создавать трехмерные объекты. Используется для творчества, развивающих занятий с детьми, коррекции изделий, напечатанных с помощью 3D принтера, и мелкого бытового ремонта пластиковых предметов[1]. Благодаря распространению 3D ручек появился новый вид искусства – 3D pen art (перевод: искусство, созданное с помощью 3D ручки).

История

Первая в мире 3D ручка, получившая название 3Doodler, была разработана американской компанией WobbleWorks. Идея пришла в голову основателям компании, Максу Боугу и Питеру Дилворту, когда сломался 3D принтер и потребовалось заделать брешь в напечатанной 3D модели[2]. Инженеры создали прототип ручки, рисующей пластиком, и представили свой проект на Kickstarter в 2013 году с целью собрать $ 30 000 для начала производства. В результате краудфандинга удалось привлечь $2,3 миллиона долларов, что стало свидетельством большого интереса аудитории к проекту.

После успеха 3Doodler на рынке стали появляться 3D ручки других производителей.

Виды 3D ручек

По принципу работы 3D ручки разделяются на два вида: «горячие» и «холодные».

«Горячие» 3D ручки

Поделка, созданная «горячей» 3D ручкой

«Горячие» ручки заправляются термопластиком, который поставляется в виде прутков или катушек нитей. В верхней части корпуса 3D ручки располагается отверстие, в которое вставляется пластик. Встроенный механизм автоматически подводит пластик к экструдеру, где он нагревается и подается в горячем виде через сопло. Расплавленный пластик способен принимать любую форму, а затем быстро застывает. Основные элементы «горячей» 3D ручки: сопло, механизм подачи пластиковой нити, нагревательный элемент, вентилятор для охлаждения верхней части сопла и ручки в целом, микроконтроллер для управления работой вентилятора, механизма подачи и нагревательного элемента. Для работы «горячей» 3D ручки требуется электропитание – как правило, используются обычные блоки питания с преобразователем напряжения 12В.

Подача материала осуществляется при нажатии соответствующей кнопки. Некоторые модели, оснащаются регулятором скорости подачи пластика, регулятором температуры нагрева и дисплеем, на котором отображается информация о выбранном режиме.

Также во многих 3D ручках есть кнопка реверса, которая позволяет легко извлекать пластиковую нить из ручки.

К преимуществам «горячих» 3D ручек относятся: небольшой вес, компактность, простота использования, прочность поделок, доступная стоимость расходных материалов. В качестве недостатков пользователи отмечают наличие проводов и нагревание сопла ручки до высокой температуры.

«Холодные» 3D ручки

Принцип действия «холодной» 3D ручки основан на экструзии жидкой фотополимерной смолы, затвердевающий на выходе под воздействием ультрафиолетового излучателя. В таком устройстве нет нагревательных элементов, и материал для рисования не имеет высокой температуры. Гаджет работает без проводов, энергопотребление происходит за счет встроенного аккумулятора. В ручку вставляется картридж с жидким полимером. Для большинства «холодных» 3D ручек доступны разные виды смол: обычные, эластичные, магнитные, светящиеся, меняющие цвет в зависимости от температуры и даже чернила для бодиарта[3].

Первой в мире 3D ручкой, работающей по технологии фотополимеризации, стал бренд CreoPop.

К преимуществам «холодных» 3D ручек относят отсутствие горячих элементов, бесшумность, работа без проводов, возможность использования большого количества фотополимерных смол с различными свойствами[4].Среди недостатков – высокая стоимость ручки и материалов, хрупкость поделок.

Расходные материалы

Основными материалами, используемыми в работе 3D ручек нагревательного типа, являются ABS и с PLA пластик[5].

ABS пластик

В основе ABS полимера – соединения, получаемые из нефти. Материал не подвержен разложению и обладает высокой прочностью, поэтому в сфере 3D печати является наиболее распространенным[6].

К преимуществам относятся:

  • застывает при температуре 100-110 градусов;
  • высокая механическая прочность;
  • глянцевая поверхность. Этот полимер при затвердевании имеет высокий уровень глянца, что делает изделия или макеты из него более привлекательными;
  • возможность вторичного использования. При утилизации ABS пластик перерабатывается без потери своих основных свойств;
  • возможность легкой обработки. Уже готовое изделие, созданное с помощью 3D ручки, можно в случае необходимости дополнительно обработать, например, отшлифовать.

К недостаткам материала относится легкий специфический запах при нагревании, поэтому его использование рекомендуется в проветриваемых помещениях.

PLA пластик

PLA пластик – органический, биоразлагаемый полилактид, произведенный на основе сахарного тростника или кукурузы.

В отрасли 3D печати PLA пластик нашел широкое применение благодаря своим свойствам:

  • плавится при температуре 160 – 180 градусов;
  • не нуждается в охлаждении;
  • подходит для рисования на различных поверхностях, хорошо держится на ткани;
  • при нагревании не выделяет вредных веществ и не имеет запаха, поэтому является безопасным для детей;
  • практически не подвержен естественной усадке и деформации.

Основной недостаток PLA пластика – это недолговечность изготовленных из него предметов. Изделия из этого полимера уже через год начинает постепенно распадаться. Второй существенный недостаток – это повышенная хрупкость, поэтому данный тип пластика рекомендуется для опытных пользователей 3D ручек.

Другие материалы для 3D ручек нагревательного типа

EMT

расплавляется при низкой температуре (60°С). Материал является более прочным, чем PLA пластик, и не обладает выраженным запахом при нагревании, в отличие от ABS пластика, однако он отличается более высокой стоимостью.

Flexy

пластик плавится при тех же температурах, что и ABS, однако после охлаждения сохраняет гибкость и пластичность — усталостная прочность выше. Подойдет для создания чехлов, кошельков, покрышек игрушечных автомобилей.[4]

3D ручки могут быть совместимы и с другими материалами: поликарбонатом, нейлоном и т.д. Для этого требуется возможность точного регулирования температуры нагрева материала, что приводит к существенному удорожанию 3D ручки.

Вопросы безопасности

3D ручки нагревательного типа являются электроприборами, поэтому работать с ними можно только после изучения инструкции по эксплуатации. Поскольку 3D ручки нагревательного типа имеют горячие элементы, при обращении с ними требуются определённые меры предосторожности. Во время работы с данным оборудованием дети должны быть под присмотром взрослых.

3D ручки, работающие по технологии фотополимеризации, позиционируются как безопасные за счет отсутствия горячих элементов, однако их использование также требует соблюдения мер предосторожности. Поскольку застывание материала происходит под воздействием ультрафиолета, вредного для глаз, необходимо делать перерывы в работе и строго следовать инструкциям производителей[7].

Примечания

Ссылки

Что такое 3D ручка, как работает, какие бывают, описание

Что такое 3D ручка? Потрясающая вещь, поверьте! Это инструмент, которым можно рисовать в трех измерениях! Если вас это немного смущает, не беспокойтесь, потому что 3D-ручки относительно новы, и еще не у всех они есть.

Что же такое 3D ручка?

Рынок аддитивных технологий развивается настолько стремительно, что не всегда успеваешь уследить за инновациями в отрасли. Поколения 3D принтеров ежегодно сменяют друг друга, однако принцип их работы остается прежним.

Хит 2019. Детский набор для творчества!

Большое количество фломастеров, карандашей, мелков и красок. Скидка 50%. Жми!

инструмент, способный рисовать в воздухеинструмент, способный рисовать в воздухе

Сегодня мало кого удивишь возможностями настольного аппарата для трехмерной печати, чего не скажешь про ручку для 3D рисования, которая полюбилась детям и взрослым и стала настоящим хитом в последнее время!

3D ручка – это инструмент, способный рисовать в воздухе. Волшебство, подумаете вы, но нет, всего лишь очередной технологический прорыв в области 3D моделирования.

Гаджет, которому суждено навсегда изменить представление о том, что такое «рисование», ведь теперь вы сможете рисовать не на бумаге, а в пространстве!

Устройство напоминает FDM-принтер, однако сфера его применения по-настоящему огромна. С его помощью вы сможете не только практиковаться в рисовании и экспериментировать в создании художественных шедевров, но и определенно сможете решить множество проблем бытового характера.

орудия изобразительного искусстваорудия изобразительного искусства

кнопка заказатькнопка заказать

FDM — технология трехмерной печати, при которой построение объекта идет за счет расплавления нити пластика, которая через экструдер подается на рабочую поверхность. Была разработана американской компанией Stratasys в 1988 году

Какие виды 3d ручек бывают?

На сегодняшний день различают два вида ручек: холодные и горячие.

Холодные 3D ручки — печатают быстрозатвердевающими смолами – фотополимерами.

Вторые (горячие) ручки используют для печати полимерные сплавы в форме катушек с пластиковой нитью, как и 3Д принтеры. В продаже распространены именно горячие ручки, для них продаются и пластиковые нити для рисования.

Как работает 3d ручка?

Горячая 3D ручка работает достаточно просто. В отличие от обычных приспособлений для письма и рисования, вместо чернил заправляется пластиковая нить. Большинство ручек, доступных на розничном рынке, используют обычный полимерный пруток, который покупается для принтеров, работающих по технологии послойного наплавления.

Большинство ручек, доступных на розничном рынке, используют обычный полимерный прутокБольшинство ручек, доступных на розничном рынке, используют обычный полимерный пруток

В задней части корпуса предусмотрено специальное отверстие, в которое вставляется пластиковая нить. Встроенный механизм автоматически подводит нить к экструдеру, где она расплавляется и выдавливается в расплавленном виде наружу.

Металлический наконечник печатной головки нагревается до температуры 240 °С, поэтому при работе с устройством следует придерживаться базовых правил безопасности.

Несмотря на то, что ручки оборудованы встроенным вентилятором для ускорения процесса застывания пластика, небрежное отношение к прибору напрямую связано с риском получить ожег.

Габариты ручки позволяют легко удерживать ее в одной руке. Незначительный шум при работе встроенного механизма не отвлекает от 3D моделирования.

FDM-ручка поддерживает быструю замену прутка, что дает возможность комбинировать цвета и материалы непосредственно во время рисования. Используемый материал может быть разным ABS или PLA.

В быту чаще используется ABS пластик. Он долговечен, устойчив к износу, хорошо подходит для склеивания пластиковых изделий. К его недостаткам причисляют склонность к незначительной усадке и наличие характерного запаха жженной пластмассы.

Пластик АБС – это современный синтетический полимер желтоватого цвета, обладающий высокой степенью ударопрочности и эластичности. Благодаря своим техническим характеристикам нашел широкое применение в качестве инженерного и конструкционного материала.

Фигуры из PLA более качественны, что объясняется заниженной температурой плавления. Кроме того, данный состав изготавливается из натуральных компонентов, что делает его биоразлагаемым.

PLA пластик создается из самых разнообразных продуктов сельского хозяйства – кукурузы, картофеля, сахарной свеклы и т.п. – и считается более экологичным, чем ABS, в основе которого лежит нефть. Изначально он применялся для изготовления продуктовых упаковок и легко утилизируется в промышленных компостных установках.

В то же время срок годности такого филамента заметно меньше, чем у ABS-сплавов.

Используемый материал может быть разным ABS или PLAИспользуемый материал может быть разным ABS или PLA

Холодные 3D ручки

Как уже отмечалось выше, холодные ручки заправляются фотополимерной смолой.

Устройство лишено нагревательных элементов, поэтому его можно смело доверить даже маленьким детям. Фотополимер моментально затвердевает под воздействием мощного встроенного источника ультрафиолетового света.

Использование холодных чернил позволяет наносить причудливые рисунки на открытую кожу без риска обжечься. Материал не имеет запаха, зато представлен в огромном количестве цветовых исполнений. Существуют прозрачные, биоразлагаемые, цветные, эластичные, токопроводящие и даже светящиеся в темноте смолы.

Безусловным лидером и первопроходцем в области 3D ручек с холодными чернилами является компания Creopop

Что можно делать с помощью 3d ручки?

Сфера применения 3D ручек безгранична. Многие пользователи ошибочно воспринимают гаджет, как развлекательное устройство. Искусные узоры, оригинальные фигурки и украшения – это всего лишь малая часть из того, на что способны аддитивные ручки!

Многие пользователи ошибочно воспринимают гаджет, как развлекательное устройствоМногие пользователи ошибочно воспринимают гаджет, как развлекательное устройство

Ручка обязательно пригодится в быту. Вполне возможно, что вам понадобится скрепить расшатавшиеся узлы, восстановить поврежденные пластиковые детали, либо создать прототип для научной деятельности.

Вместе с прибором, рисующим пластиком, нет ничего невозможного. С его помощью вы существенно упростите процесс прототипирования, а также всегда сможете собственноручно создать подарки для друзей и близких.

Преимущества 3D ручки

Конечно, 3D принтер способен создавать сложные фигуры, в точности повторяя элементы запрограммированной модели. Но ручка для трехмерной печати имеет ряд своих, эксклюзивных преимуществ. Прежде всего, это вес. Современные гаджеты весят от 40 грамм. Их легко удержит в руке даже ребенок.

Небольшие габариты и эргономичная конструкция позволяет брать прибор в командировки или на отдых. Некоторые аппараты оснащены перезаряжающимися батареями, что дает возможность использовать их вдали от точек доступа к электросети. Кроме того, маленькие размеры ручки позволяют рисовать ею даже в труднодоступных местах.

Устройство существенно расширяет рамки изобразительного искусства. Если вам до художества нет никакого дела, то вашим детям определенно понравится такое приспособление.

Ручка станет отличной игрушкой для детей. Она не только позволит скрасить досуг и по новому взглянуть на современные развлечения, но и способствует расширению детского кругозора, развитию пространственного мышления и моторики рук.

Еще один аргумент в пользу 3D ручки – доступная цена.

При схожих возможностях с настольным принтером, стоимость ручки в разы меньше. Вы сможете купить сразу несколько экземпляров для своей семьи, чтобы самостоятельно оценить прелести трехмерной печати.

3D ручка — лучший подарок для ребенка

Время не стоит на месте, а вместе с ним меняются и орудия изобразительного искусства. Еще недавно дети рисовали ручками, карандашами и фломастерами. Сегодня для этого есть 3D ручка, благодаря которой можно создавать объемные фигуры в режиме реального времени просто в воздухе!

ваш ребенок будет в восторгеваш ребенок будет в восторге

кнопка заказатькнопка заказать

Если детальнее изучить преимущества данного гаджета, становится понятно, что он куда полезнее для ребенка, нежели игровая консоль.

Регулярно используя ручку для 3D печати ваше чадо заметно улучшить моторику пальчиков. В его руках окажется мощный инструмент, развивающий фантазию и абстрактное мышление.

Более того, инструмент, способный превратить фантазии в реальность. Ваш ребенок сможет самостоятельно создавать для себя игрушки, что поможет ему самореализоваться.

Безопасность при использовании 3d ручки

Не стоит забывать, что 3d ручка – это электроприбор. Она работает от розетки с 220v, поэтому техника безопасности с ней такая же, как и при работе с любыми другими электроинструментами. Нужно отметить, что во время рисования кончит ручки нагревается до температуры в 270 градусов, из-за чего может легко нанести ожег на открытой коже.

Поэтому хвататься пальцами за металлическое или керамическое сопло во время работы с прибором запрещено. В остальном, ручка абсолютно безопасна. Используемые сплавы пластика, такие как ABS и PLA, безвредны и нетоксичны.

Примечательно, что холодные ручки с ультрафиолетовым излучателем работают от аккумуляторных батарей, поэтому не нуждаются в подключении к электросети.

Кроме того, они не имеют горячих деталей, что исключает любую опасность, связанную с получением травмы. Такие приборы можно без опаски доверить деткам.

Какая 3D ручка лучше?

3D ручка MyRiwell заметно меньше конкурентов. Более того, она представлена в нескольких цветовых решениях. Стильный маркетинговый продукт будет отличным подарком.

Стильный маркетинговый продукт будет отличным подарком.Стильный маркетинговый продукт будет отличным подарком.

Толщина подачи пластика стандартная – 0,7 мм. Опционально можно заказать насадку на печатную головку, которая сужает сопло экструдера до 0,4 мм.

Производитель уверяет, что керамическое сопло нагревается всего до 70 °С и безопасно. На деле температура может несколько выше. Для рисования используется нить ABS или PLA.

Ручка MyRiwell выделяется на фоне остальных не только дизайнерским оформлением, но и наличием плавной регулировки температуры плавления. Делается это с помощью секретного винтика, скрытого под резиновой заглушкой.

Температура регулируется в пределах от 160 до 250 °С, при этом никаких индикаторов не предусмотрено. Подбирать подходящий температурный режим придется наугад.

Заключение

Сегодня можно смело заявить, что 3D ручки – это не сезонный гаджет. Многофункциональность, удобные габариты и доступная цена делает их не просто дополнением к настольному 3D принтеру, а его альтернативой. Имея такой прибор под рукой, вы сможете реализовать многие свои идеи, а также решить большинство бытовых проблем за считанные минуты.

кнопка заказатькнопка заказать

Есть ли будущее у 3D ручки?

Есть ли будущее у 3D ручки?

Лунева Д.А. 1Решетникова Д.О. 1

1МБОУ СОШ №6

Кузнецова И.Н. 1

1МБОУ СОШ №6

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

До чего же сильно продвинулась наука! Как же далеко зашёл человек в своих рассуждениях и действиях. Со слов родителей мы знаем, что в их детстве не было сотовых телефонов, ноутбуков, интернета. А, если бы кто-нибудь им тогда сказал, что через пару десятилетий у них будут разные устройства, в которых одновременно будет и цветной телевизор, и фотокамера, и видеокамера, и радиоприемник, и телефон, да еще и без проводов, да еще и такого размера, что в карман поместится. Они бы не поверили. Но они также бы не поверили и в то, что обычной ручкой можно делать модели объемных предметов. И сейчас мы не представляем себе, как можно жить без новых технологий.

Мы часто смотрим телеканал «Моя планета» и «24 техно». И увидели передачу о 3D- ручке — устройстве, которое может делать реальные предметы, окружающие нас. Нас это очень заинтересовало. Есть ли будущее у этого «чудо – предмета»? И как она будет служить человеку? На благо ему или нет? Вот мы и решили изучить эти вопросы глубже.

Тема исследования. Есть ли будущее у 3D-ручки?

Цель: узнать, что такое 3D- ручка и как её можно использовать.

Задачи.

Найти информацию об истории создания 3D-ручки.

Изучить принцип работы этого устройства.

Познакомить своих одноклассников с технологией изготовления изделий из него.

Выполнить творческую работу с использованием 3D – ручки.

Сформировать интерес к новому виду декоративно – прикладного творчества.

Методы исследования: изучение информации, полученной из Интернета, наблюдение, анализ результатов.

Объект исследования: 3D — ручка.

Предмет исследования: возможности 3D – ручки.

Актуальность исследования в том, что новые информационные технологии всегда очень быстро развиваются и без них немыслимо современное общество.

1. Теоретическая часть

1.1. История создания 3D-ручки

Всего несколько десятилетий назад 3D принтеры, творящие объёмные фигуры, считались фантастикой. Самые первые трёхмерные печатающие устройства имели впечатляющие габариты, хотя при всём этом имели возможность создавать только ограниченное количество объектов. Ко всему прочему, стоили они десятки и даже сотни тысяч долларов. Поэтому брать на себя первую продукцию аддитивных технологий имели возможность исключительно приличные компании. В 2012 году возникли наиболее малогабаритные и экономные приспособления для трёхмерной печати. Обширное использование получили принтеры южноамериканской фирмы 3D Systems, которая сейчас считается основным поставщиком в области AF-технологий. Инновации начали вводить конструкторские бюро, НИИ, архитекторы, художники. 3D принтеры отвоевали для себя место в учебных действиях при освоении инженерных квалификаций.

Сейчас 3D принтеры доступны любому желающему. А в феврале 2013 года возникла первая ручка для создания объёмных форм, получившая название 3Doodler, была разработана американской компанией WobbleWorks. Идея пришла в голову основателям компании, Максу Боугу и Питеру Дилворту, когда сломался 3D принтер и потребовалось заделать брешь в напечатанной 3D модели. Инженеры создали прототип ручки, рисующей пластиком.

1.2 Что такое 3D-ручка?

3D — печать постепенно становится распространенной и узнаваемой технологией, возможности которой в большей или меньшей степени уже представляет себе практически каждый.

3D — ручка для рисования пластиком «в воздухе» – это достаточно новое направление, которое каждый день вовлекает все большее творческих людей.

Это легкое и компактное устройство для рисования пластиком, так сказать «ручной 3D-принтер», способный создавать объемные фигуры прямо в воздухе и не по волшебству, а на основе современных технологий и материалов, которые позволили произвести настоящий прорыв в современно трехмерном моделировании.

В основе работы 3D-ручки лежит тот же принцип, что и в FDM-принтере, при этом простота использования и относительно невысокая стоимость делают возможности ее применения весьма широкими: от простых рисунков любимых персонажей до настоящих шедевров художества.

1.3 Технические особенности 3D-ручек

Сегодня пользователям представлены два типа 3D-ручек, так называемые «холодные» и «горячие».

В «холодных» 3D-ручках в роли «чернил» используются фотополимерные смолы, которые затвердевают под действием встроенного элемента, излучающего ультрафиолет.

Принцип работы «горячих» 3D-ручек достаточно простой: в качестве «чернил» используется нить пластика (ABS, PLA и др.), большинство 3D-ручек, используют нить диаметром 1,75 мм .

В задней части корпуса 3D-ручки находятся два отверстия: одно для подключения блока питания, второе – для пластиковой нити, которая с помощью встроенного механизма затягивается в 3D-ручку, где нагревается и в расплавленном виде подается наружу через тонкий «носик» (сопло). При контакте с воздухом пластик быстро застывает и через короткое время полученная форма становится твердой, как сама нить. Современные модели 3D-ручек призваны быть максимально удобными и легкими, а также имеют специальные полезные функции:

1. Поддержка разных типов пластика — современные модели поддерживают как ABS, так и PLA пластики, которые могут использоваться для разных задач. Такие 3D-ручки автоматически нагреваются до нужной температуры при выборе определенного типа пластика, что дает возможность быстрой замены пластика при рисовании разными цветами.

2. Наличие дисплея является неотъемлемой опцией для 3D-ручек, поддерживающих разные типы пластиков, с его помощью легко следить за состоянием нагрева.

3. Возможность регулировки скорости подачи пластика особенно актуальна при рисовании мелких элементов или тонких линий, чтобы рисунки получались аккуратными.

4. Функция автоматического «спящего» режима весьма полезна, когда нужно сделать короткий перерыв в рисовании и оставить 3D-ручку без присмотра: при отсутствии активности в течение 2-5 минут она автоматически перестает поддерживать нагрев и остывает.

Самым распространенным пластиком для 3D-ручки является ABS-пластик. Он характеризуется долговечностью и устойчивостью к износу. Несмотря на то, что этот пластик не является токсичным, все же он имеет выраженный запах жженой пластмассы при использовании в рисовании 3D-ручкой, работать с ним лучше в хорошо проветриваемом помещении.

PLA-пластик производится на основе растительного сырья из кукурузы и является биоразлагаемым и более экологичным, чем ABS. Не разрешается мыть и чистить изображения из PLA нитей, они от этого разрушаются. Расцветки пластика имеют глянцевый блеск. При рисовании такой пластик имеет более низкую температуру плавления, не выделяет неприятных запахов, поэтому как нельзя лучше подходит для детского творчества особенно в домашних условиях.

1.4 Применение 3D-ручки

Обычно освоение 3D-ручки начинается с рисования каких-то простых фигурок и узоров, после того, как принцип действия становится понятным просыпается интерес к рисованию более серьезных картинок с помощью трафаретов, это могут быть и различные животные, и персонажи игр и мультфильмов, а также просто интересные картинки, которые хочется раскрасить в разные цвета. 
Кроме творчества и хобби, 3D-ручки могут использоваться также для решения бытовых задач, когда нужно заполнить пластиком какие-либо полости, связанные, например, с дефектами моделей при печати на 3D-принтере или другими бытовыми потребностями. 

Занятия с 3D-ручкой не просто развивают умение создавать ровные контуры, но и развивают творческое мышление, отвечающее за то, как именно создать ту или иную модель, помогают учиться поиску решения в творческих задачах, развивать фантазию и абстрактное мышление, позволяют ребенку почувствовать себя творцом. 
Кроме этого 3D-ручки помогают в развитии мелкой моторики рук, что очень важно для детей с раннего возраста.

Если сломалась игрушка? Не беда, ведь теперь не обязательно бежать за клеем или клеевым пистолетом, который можно назвать прародителем горячих 3D- ручек, поскольку в нем используется похожий принцип плавления клеевых стержней. Но теперь, для того чтобы склеить две половинки сломанной детали достаточно включить 3D ручку в розетку.

Школьные учителя уже начинают вводить в свою программу использование 3D-ручек с целью вызвать интерес у детей к образовательному процессу и наглядной демонстрации обучающего материала. 3D-ручки имеют все шансы стать нужным художественным средством для разных уроков. Геометрия — раздел математики, в котором изучаются пространственные отношения (напр., взаимное расположение) и формы (напр., геометрические тела) и их обобщения: с внедрением 3D-ручки ученик имеет возможность изображать геометрические фигуры, а вслед за тем делать собственные сложные формы.

Архитектура / История. При исследовании важных исторических памятников учащиеся могут воссоздать их силуэты для проведения презентаций.

Создание архитектурных чертежей содержит в себе математические способности – знание геометрии, пространственной ориентации и измерений.

Технология . Ребята могут делать разные поделки: украшения, объёмные цветы, героев любимых мультфильмов.

При помощи 3D- ручки вы всегда можете изготовить элементы спортинвентаря, например, воланчик.

3D- ручка станет волшебной палочкой, по мановению которой можно создавать образы, только что появившиеся или давно засевшие в голове, например, того же разработчика игр. Бывает так, что некоторым не дано (а зачастую просто и не нужно) представить будущего персонажа или уровень подземелья на листе бумаги, особенно в изометрической проекции или перспективе. Теперь разработчику или заказчику не нужно рисовать в изометрии в 2D, не нужно запускать массивный 3ds Max, достаточно лишь взять 3D-ручку в руки и продемонстрировать наглядно другу, коллеге или заказчику свою идею или видение решения проблемы.

3D-ручки являются не только индивидуальными объектами для творчества и самовыражения, но и могут стать дополнением к использующимся инновационным технологиям в бизнесе. Представьте себе такую ситуацию, что художнику-декоратору, конструктору, дизайнеру интерьеров или архитектору заказали макет, который тот закончил, и ему его исполнили в 3D виде, например, напечатав на 3D- принтере.

Заказчику понравился макет, но он попросил исполнителя работ что-то добавить к имеющемуся проекту, например, высадить живую изгородь по периметру территории, обнесенной забором, или техника пожарной безопасности требует наличия лестницы на второй этаж дома. Иметь под рукой все необходимые материалы в виде миниатюр редко когда получается. Гораздо легче взять в руку 3D-ручку и “дорисовать” такую живую изгородь или лестницу, о которой попросил заказчик, чем отвозить макет обратно в офис или бегать по магазинам миниатюр в поисках необходимых элементов окружения, декора и т.д. Такой подход позволит исполнителю сэкономить время и деньги, которые он мог бы потратить на подобную доработку и дополнительную встречу с заказчиком. Идеальным окончанием сделки может стать подписание контракта на строительство объекта в день демонстрации макета проекта заказчику.

3D-ручки, применяющиеся в медицине, называются Биоперьями или Биоручками (BioPen). Такие ручки используются для устранения трещин в костях. Живые клетки, нанесенные Биоручкой на кости и хрящи во время операций, размножаются и проникают в нервную, мышечную и костную ткань, способствуя их скорейшему восстановлению. В некоторых экспериментах ученым уже удалось вырастить хрящ коленного сустава из клеток, “напечатанных” 3D-ручкой. Биоручки используют биологически чистые материалы, например, экстракты водорослей, превращенные в гель, отверждаемый все тем же ультрафиолетовым светом.

Конечно, выращивание тканей из клеток и 3D- печать биоматериалом не является чем-то новым, но всегда приятно осознавать тот факт, что появился новый хирургический инструмент, выросший из идеи, ограниченной стенами лабораторий.

1.5 Безопасность при использовании 3D— ручки

Не стоит забывать, что 3D ручка – это электроприбор. Она работает от розетки с 220v, поэтому техника безопасности с ней такая же, как и при работе с любыми другими электроинструментами.

Подготовка рабочего места. Как обычно, перед началом какого-либо занятия следует очистить рабочие место от лишних вещей и деталей, которые ухудшат вашу работу и само изделие. Под рукой у вас не должно быть ничего, что мешало бы производить ювелирную работу, либо что могло бы испортиться, попади туда капля горячего пластика.

Подключение. Большинство моделей ручек работают от электричества, остальные – от встроенного аккумулятора. При подключении инструмента ваши руки и сама ручка должны быть сухими, как и поверхность стола. Не держите под рукой жидкости, которые могут пролиться и привести к короткому замыканию. ЗD- ручка хоть и имеет надежный корпус, закрывающий от контакта с нагревающими элементами, не стоит забыть о данном правиле.

Использование. Основная опасность исходит от нагретого пластика и внутренней системы. Не прикасайтесь к готовому объекту, пока не будете полностью уверены, что он остыл. Не трогайте стержень ручки во время работы или сразу после выключения. Если вы все равно каким-то образом обожглись, мгновенно бежите в ванну и промойте ожог холодной водой.

Чернила. Существует два вида чернил для 3D- ручки: ASB и PLA. При переходе с одного материала на другой, обязательно очищайте сопла, когда инструмент остыл и не включен в сеть. В противном случае – стержень будет забит чернилами, и вы не сможете полноценно использовать ручку.

Неприятный запах. Если вы почувствовали резкий, неприятный запах, выключите ручку из сети и положите на твердую ровную поверхность до выяснения причин поломки. Ни в коем случае не пытайтесь разобрать инструмент самостоятельно, когда он включен в сеть.

1.6 Ремонт 3D-ручки

3D- ручка является сложным техническим устройством, внутри которого много движущихся механизмов, работающих на плате с микроэлектроникой, которые к сожалению при неправильной эксплуатации или из за некачественных расходных материалов могут выйти из строя. Необходимость ремонта возникает довольно часто. Можно привести в порядок 3D- ручку к которой вы уже привыкли, при том дешевле, чем купить новую.

Могут не загореться индикаторы. В этом случае для начала проверьте исправность розетки или адаптера. Если причина поломки в моторе, плате или нагревательном элементе, то отремонтировать под силу только специалистам. Ремонт будет заключаться в замене вышедшей из строя детали. Чаще всего пользователи говорят, что ручка сломалась, когда из сопла не выходит пластик или температура маркера не достаточно высокая. Здесь особо переживать не стоит. Чтобы починить неисправность, нужно прочистить сопло. Для этого снимаем крышку и выполняем последовательно операции:

Откручиваем шуруп, который удерживает блок подачи пластика, снимаем его и отсоединяем клеммы.

Вынимаем блок из корпуса.

Снимаем направляющую трубку.

Подключаем клеммы блока подачи пластика и включаем ручку в сеть в разобранном виде.

После нагрева подаем пластик в сопло вручную, а затем вытягиваем его. Собираем все детали в корпус, закрываем крышку и тестируем устройство. Нити выходят, гаджет нагревается до нужной температуры. Таким образом, мы прочистили засорившиеся элементы.

Если индикатор нагрева мигает , а пластик не выходит из сопла нужно произвести следующие операции:

Отключить от питания.

Открутить болт на задней панеле.

Отсоединяем провода.

Откручиваем подающий мотор с редуктором.

Меняем старый мотор на новый.

Собираем ручку в обратном порядке.

Проверяем работу ручки.

2. Практическая часть

2.1 Используемые материалы

Для изготовления нашей детали мы использовали материалы:

ABS пластик

PLA пластик

Инструменты и оборудование для изготовления изделия

3D- ручка

Подшипник качения — 2шт

Деревянная шпажка

Контур ракеты

Контур материков

Форма шара

Ножницы

2.3 Технология изготовления

Изготовление ракеты с помощью 3D- ручки:

По заранее приготовленному контуру обводим части ракеты, закрашивая их

Соединяем полученные части ракеты, дорабатываем форму ракеты до нужной нам формы

Изготовление глобуса с помощью 3D- ручки:

По заранее заготовленному шаблону обводим контуры материков. Немного их штрихуем чтобы контур держал форму.

На шар из фольги наносим пластиковую нить синего цвета- цвет моря, накладывая в нужном месте материки

Закрашиваем материки разными цветами

Полученные 2 половинки соединяем

В заготовленные отверстия в глобусе закрепляем подшипники.

В подшипники помещаем деревянные шпажки, формируем устойчивую ножку

Заключение

Все-таки будущее гораздо ближе, чем мы думаем. Наше предположение о том, что возможности 3D-ручки очень велики на данный момент, подтвердилось. Объемное моделирование плотно входит в нашу жизнь, а значит у этой технологии большое будущее.

Из нашей работы видно, что возможности применения трехмерной ручки бесконечны, особенно в архитектуре, в машиностроении, в медицине.

Ручка станет отличной игрушкой для детей. Она не только позволит скрасить досуг и по новому взглянуть на современные развлечения, но и способствует расширению детского кругозора, развитию пространственного мышления и моторики рук.

Еще один аргумент в пользу 3D-ручки – доступная цена. При схожих возможностях с настольным принтером, стоимость ручки в разы меньше. Вы сможете купить сразу несколько экземпляров для своей семьи, чтобы самостоятельно оценить прелести трехмерной печати.

3D -ручка – лучший подарок для ребёнка. Время не стоит на месте, а вместе с ним меняются и орудия изобразительного искусства. Еще недавно дети рисовали ручками, карандашами и фломастерами. Сегодня для этого есть 3D-ручка, благодаря которой можно создавать объемные фигуры в режиме реального времени просто в воздухе!

Регулярно используя ручку для 3D-печати ваше чадо заметно улучшить моторику пальчиков. В его руках окажется мощный инструмент, развивающий фантазию и абстрактное мышление.

Более того, инструмент, способный превратить фантазии в реальность. Ваш ребенок сможет самостоятельно создавать для себя игрушки, что поможет ему самореализоваться.

Мы надеемся, что новая технология объемного моделирования принесет пользы значительно больше, чем вреда. За любым изобретением стоит человек. А это значит, что хороших людей больше, чем плохих.

В заключении хочется отметить, что цель нашего исследования достигнута – мы изучили устройство 3D-ручки и область его применения.

По ходу исследования мы поняли, что использование 3D-ручки в учебном процессе поможет нам лучше понять трёхмерное моделирование. В дальнейшем наша цель изготовить модель Эйфелевой башни.

Информационные источники:

3D в школе: кто, чему и как должен учить? // https://habrahabr.ru/post/275495/ (Дата обращения: 29.01.2017 г.)

3D Моделирование // http://3d-artlines.ru/stati/3d-ruchki-kak-ne-poteryatsya-pri-vybore/ (Дата обращения: 16.02.17)

3D Моделирование // babadu.ru/academy/article/3d-ruchka-volshebnaya-palochka-nashih-dney (Дата обращения: 13.02.17)

3D Моделирование // http://illjuzija.ru/3d-risunki/chto-takoe-3d-ruchka-i-kak-ona-rabotaet.html (Дата обращения: 01.03.17)

3D Моделирование // http://3dpen-art.ru/uroki-risovaniya-3d-ruchkoy/ (Дата обращения:11.12.16)

3D Моделирование // http://www.electronics-review.ru/risuem-v-3d-s-pomoshhyu-3d-ruchek/ (Дата обращения: 20.11.16)

7. 3D Моделирование // http://www.toybytoy.com/toy/3D-pen-How-to-use-that-to-draw/ (Дата обращения: 29.11.16)

8.3D Моделирование // http://3dtoday.ru/blogs/cvetmir3d/great-review-on-the-3d-knobs/ (Дата обращения: 05.12.16)

9.3D Моделирование // http://yes3d.ru/blogs/blog/kak-vybrat-3d-ruchku-sravnenie-populyarnyh-modeley-3d-ruchek/ (Дата обращения: 10.01.17)

10.3D Моделирование // https://www.losprinters.ru/articles/trafarety-dlya-3d-ruchek/ (Дата обращения: 14.01.17)

11.3D Моделирование как обязательный элемент школьной программы в гимназии: зачем и почему? // http://education-events.ru/2013/10/30/3d-model-in-school-ptc-irisoft-comments/ (Дата обращения: 10.12.2017 г.)

12.3D-моделирование, как средство воспитания будущих инженеров // https://edugalaxy.intel.ru/?showtopic=6316 (Дата обращения: 11.03.2017 г.)

Просмотров работы: 100

3D ручка. История создания.

3D ручка. История создания.
3D-ручка
FDM печать стала логическим развитием станков с числовым программным управлением. Единственным принципиальным отличием стало использование специализированной насадки (экструдера) для плавки и подачи пластика. По той же логике получили развитие и термоклеевые пистолеты, широко распространенные в быту. Использование термопластиков вместо термопластичного клея позволяет использовать подобные устройства, получившие названия 3D-ручек, в качестве ручных устройств аддитивного производства.

История
Первенцем нового направления развития 3D-печати стала ручка 3Doodler от компании Wobbleworks.
Команда обратилась к площадке Kickstarter для сбора средств, необходимых для воплощения проекта в жизнь.
Поставив целью собрать $30 000, компания Wobbleworks сумела привелечь более двух миллионов долларов к моменту окончания кампании, что говорит о высоком интересе публики.

На фоне успеха 3Doodler прокатилась конкурентная волна. На данный момент ассортимент 3D-ручек включает в себя фактические клоны 3Doodler – такие, как 3DYAYA или SwissPen, а также более оригинальные разработки, включая Dim3W и LIX.

Основной принцип работы всех этих устройств одинаков, но имеются и некоторые конструктивные особенности, направленные на совершенствование достаточно молодой концепции.

Конструкция
В сущности, 3D-ручка есть не что иное, как ручной экструдер. В роли ЧПУ станка выступает сам пользователь.
Основные элементы 3D-ручки: сопло, механизм подачи пластиковой нити, нагревательный элемент, вентилятор для охлаждения верхней части сопла и ручки в целом, микроконтроллер для управления работой вентилятора, механизма подачи и нагревательного элемента.
Так как практически все программные функции 3D-принтеров выполняет сам пользователь, 3D-ручки не требуют соединения с компьютером или создания цифровых моделей. Требуется лишь электропитание – как правило, используются обычные блоки питания с преобразователем напряжения 12В.
Как и в FDM-принтерах, нагрев сопла занимает несколько минут, после чего ручка готова к печати. Подача материала осуществляется при нажатии соответствующей кнопки. Некоторые модели, например Dim3W, оснащаются регулятором скорости печати.
Также возможно наличие реверса протягивающего механизма. Эта функция позволяет быстро извлекать пластиковую нить из ручки и заменять ее материалом другого цвета.

Материалы
На данный момент в качестве материалов для 3D-ручек используются два самых популярных пластика в FDM 3D-печати – ABS-пластик и органический, биоразлагаемый полилактид (PLA-пластик). Теоретически, возможно применение и других материалов – поликарбоната, нейлона и т.д. В то же время, существующие модели не дают возможности точной регулировки температуры сопла, важной при переходе на другие материалы. Температурные характеристики заложены в прошивке. В будущем можно ожидать большего разнообразия ассортимента материалов и возможность точной настройки температуры, если будет соответствующий спрос.
Как и полноценные FDM принтеры, 3D-ручки используют термопластиковые нити диаметром 1,75 или 3мм. Для удобства работы с ручкой, нити, как правило, поставляются в виде обрезков, а не катушек, но в конечном итоге все зависит от выбора пользователя.

Применение
3D ручки позиционируются, как средство для творческой работы, трехмерного рисования. Хотя устройства действительно могут выполнять такую роль, создание более-менее приличных на вид моделей требует серьезной сноровки.
Однако изначально 3D-ручки задумывались совсем для другой цели, аналогичной с целью своих прародителей – термоклеевых пистолетов. Речь идет о ремонте. Дело в том, что некоторые виды пластиков, используемых в FDM 3D-печати (например, весьма популярный ABS-пластик), имеют высокую степень усадки и склонность к деформациям при неравномерном охлаждении. Все это зачастую приводит к растрескиванию изготовляемых моделей. 3D-ручки должны были стать инструментом для ручного ремонта напечатанных моделей. Эти устройства позволяют заполнять пропущенные слои или разломы.
Особенно хороших результатов можно добиться при аккуратной обработке трещин ацетоном, растворяющим ABS-пластик. Размягченная таким образом поверхность будет хорошо схватываться со свеженанесенным с помощью 3D-ручки пластиком
Поверхность отремонтированного участка можно выровнять за счет шлифовки и аккуратной обработки тем же ацетоном. Аналогичным образом можно подвергнуть ремонту и бытовые изделия – многие из них выполняются из того же ABS-пластика, получившего широкое распространение в промышленности.
Что же касается применения в художественных целях, 3D-ручки придутся по душе тем, кто любит рисовать и желает перейти с двухмерных зарисовок к трехмерным физическим моделям.
Основная сложность заключается в чисто человеческих ограничениях – любое нежелательное движение руки отразится на качестве исполнения модели, особенно при рисовании модели «в воздухе».
Одним интересным способом повышения качества стало деление моделей на составные части с использованием зарисовок на бумаге в качестве шаблонов. Готовые же детали просто склеиваются вместе.
Таким методом вполне можно выполнить неплохую репродукцию Эйфелевой башни.
Само собой, метод применим лишь при создании частей моделей с относительно плоскими поверхностями.
Весьма многообещающей является возможность применения разновидности 3D-ручек в медицине.
Такие устройства, называемые «биоручками» (BioPen) испытываются в качестве инструментов для нанесения слоев живых клеток, смешанных с биополимерами, выполняющими роль поддерживающих матриксов и содержащих необходимые питательные вещества.
Оригинальная 3D-ручка BioPen была разработана австралийскими учеными из ASEC и предназначена для ремонта хрящевых и костных тканей.
При хирургическом вмешательстве PioPen позволяет врачам «закрашивать» поврежденные участке костной или хрящевой ткани, стимулируя восстановительный процесс.
Вслед за технологией FDM, адаптации для «ручного» применения подверглась и фотополимерная 3D-печать. Проект CreoPop предлагает новаторский дизайн 3D-ручки, основанный на экструзии жидкой фотополимерной смолы, затвердевающий на выходе под воздействием ультрафиолетового излучателя. В отличие от FDM ручек, такое устройство не представляет угрозы ожогов – в конструкции нет никаких горячих элементов. Кроме того, фотополимерные смолы известны широким выбором физических свойств – здесь и твердые материалы, и резиноподобные, и даже магнитные. Стоимость таких устройств будет достаточна невысокой, на уровне FDM 3D-ручек, но стоимость расходных материалов сделает этот метод 3D-рисования несколько более дорогостоящим.

Отправить ответ

avatar
  Подписаться  
Уведомление о